
 

Appendix B Random Forests Example 
The following example has been designed to illustrate the steps of the Random Forests (RF) 
clustering approach used in this investigation. The data used for this purpose were randomly 
generated to represent measurements of boron and calcium for samples from both impacted and 
unimpacted locations. The real data are measured on a much larger list of variables, and do not 
necessarily exhibit such clear separation between impacted and unimpacted samples. However, 
this simple example offers a clearer view of the RF clustering process than the real, and far more 
complicated, data could. The example data are illustrated in Figure B-1: 

 
Figure B-1.  Example dataset randomly generated to represent water samples from “impacted” (red) and 
“unimpacted” (blue) wells, measured for Boron and Calcium. These data were made up for the purpose of the 
illustration—results from this example should not be taken to imply anything about true values of Boron or Calcium 
in impacted versus unimpacted water samples. 

Note that the samples have been color-coded based on the “true” grouping prescribed for the 
purpose of the example. However, the crux of the clustering problem in this study is that, in fact, 
the true impacted status of the samples is unknown. To reflect this, in subsequent figures the data 
are not distinguished by color.  
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The first step in the RF clustering algorithm is to generate a synthetic dataset by making random 
draws from the values of each variable in the real data6. An example is shown in Figure B-2. 

 
Figure B-2.  The first step in the Random Forests clustering algorithm is to generate a synthetic dataset (grey), based 
on the real data of interest (purple). Note that the latter are the same data as in Fig. 1, recolored to reflect that the 
true impacted versus unimpacted status of the samples is unknown during a typical analysis. 

As can be seen here, the RF clustering algorithm calls for generating the same number of 
synthetic samples as there are in the real dataset (in this case, 10). Because the synthetic data 
were drawn randomly from each variable independently, they do not exhibit the same correlation 
structure as the real data. In this example, values for Boron and Calcium are correlated in the real 
data—that is, high values for one variable tend to be associated with high values for the other, 
and vice versa. By contrast, the synthetic data are just as likely to have high values of one 
variable paired with low values of the other. Ultimately, it is this distinction—structure in the 
real data, versus none in the synthetic—that allows the RF analysis to “learn” about the nature of 
the real data.  

The next step in the method is to construct an RF model that tries to separate the real and 
synthetic data. An RF is comprised of hundreds or thousands of decision trees, mathematical 
                                                

6 In this appendix, the 10 data points shown in Fig. B-1 are considered the “real” data. While these data were in fact 
fabricated for this illustrative example, they represent real samples that might be collected from the field. Most 
importantly, they exhibit correlation structure among the measured variables (in this case, high values of Boron are 
associated with high values of Calcium, and vice versa), as would be typical for real field data. By contrast, the 
“synthetic” data generated as part of the RF clustering algorithm (grey dots in Fig. B-2) show no such relationship. 
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devices that attempt to classify a group of samples by splitting it repeatedly based on the values 
of measured variables. An example of one such tree is shown here: 

 

 
Figure B-3. A Random Forests analysis consists of a collection of many individual decision trees. One such tree is 
illustrated here. (a) The tree, in which boxes represent nodes containing real and/or synthetic samples (shown by 
purple and grey numbers, respectively). The tree is built by splitting each node based on a particular value for one of 
the variables in the dataset (criteria beneath boxes). The final leaf nodes are assigned to whichever class they 
predominantly contain (colored outlines); these are the classes the tree would predict for samples classified into each 
leaf based on the splitting criteria. (b) An alternative representation of the tree. The splits in (a) are translated into 
divisions along the calcium and boron axes, which together define regions in which the tree predicts samples are 
either real (purple) or synthetic (grey). In both (a) and (b), samples whose color matches the leaf / region in which 
they fall have been correctly classified by the tree (17/20, in this example); the remaining samples (3/20) have been 
misclassified. 
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The tree in Figure B-3a was produced in steps. In the first step, there are 10 samples labeled “real” 
and 10 labeled “synthetic”. The decision tree algorithm considered all possible “splits” along the 
Calcium and Boron axes, and found that the best7 possible split was on Calcium, at a value of 
1434.2 mg/L. Defining this split produced two new groups, each of which is somewhat more 
segregated than the original. The process was then repeated to split each of the resulting groups 
further, leading to four total groups or “leaves” that are fairly homogeneous in terms of their real 
versus synthetic makeup8. In Figure B-3a, the leaves are color-coded to match the class to which 
the majority of their observations belong. For each leaf, this is the tree’s prediction of class 
membership for any sample that belongs in that particular leaf based on the classification rules 
defined by the tree.  

For this simple example with only two measured variables, the decision tree can also be 
illustrated in the scatterplot of the data. As shown in Figure B-3b, each split in the decision tree 
corresponds to dividing the data plane horizontally or vertically, and the four shaded regions 
defined by these divisions correspond to the four leaves of the tree. In both views, it is clear that 
classification is not perfect—two synthetic samples are predicted to be real in the lower left 
quadrant, and one real sample is identified as synthetic in the lower right. However, there is 
enough structure in the real data that the RF predictions are accurate for the majority of samples, 
which is all that is required to obtain meaningful clustering results.  

The next step in the RF clustering algorithm is to construct a proximity matrix from the decision 
trees used to classify the real and synthetic data. Again, the single tree from above (Figure B-3) is 
used for illustration. In Figure B-4a, the data are again illustrated with shading to indicate the 
tree’s real and synthetic class predictions. Labels have been added to the real data for clarity, and 
the synthetic data have been removed as they are not considered further in the analysis once their 
role in constructing the decision trees has been fulfilled.  

Figure B-4b shows the proximity matrix for the example decision tree. In this matrix, each row 
and column represents one of the samples, such that every entry in the matrix corresponds to a 
pair of samples (e.g., the entry in the third row and fourth column represents Sample 3 paired 
with Sample 4). Entries are defined to be 1 if the pair of samples they represent are classified 
into the same leaf in the decision tree, and 0 otherwise. This is again easy to illustrate in the 
scatterplot of the data in Figure B-4a—sample pairs receive a 1 if they are in the same shaded 
region, and a 0 if not. Note that every diagonal entry of the matrix must contain a 1 by this 
definition of proximity, since every sample is in the same leaf/shaded region as itself. Note also 
that such a proximity matrix is symmetrical (that is, the entry [i, j] is equal to entry [j, i] for any 
row/column numbers  i and j), but for clarity only half of the example matrix is filled in.  

  

                                                

7 In terms of making each of the resulting groups as homogeneous as possible.  
8 In practice, the tree-building algorithm actually proceeds further, until all leaves contain only one class of 
observation. For the purpose of this example, however, this partial tree provides a better illustration of key concepts. 
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Figure B-4.  Decision trees are used to construct a proximity matrix. (a) The data from Fig. 3b, with synthetic 
samples removed for clarity (they are used only for tree construction, and discarded thereafter), and sample numbers 
added for reference. (b) The proximity matrix for the data, in which row and column numbers correspond to the 
sample numbers in (a). Each entry in the matrix is 1 (shaded green) if it corresponds to a pair of samples that are 
classified in the same leaf node in the decision tree (i.e., fall into the same shaded region in (a)), and 0 otherwise 
(shaded light grey). For clarity, only half of the symmetric proximity matrix is filled in here. 
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As noted above, an RF analysis consists of repeating the tree-building and proximity-calculating 
steps many times9. To obtain a final proximity matrix the matrices from all trees are averaged 
together. A 1 or 0 in the final matrix would indicate samples that were classified together in all 
or none of the trees, respectively. In practice, most entries in the final matrix will be somewhere 
in between, and thus represent the degree of similarity (that is, proximity) between each pair of 
samples. The final RF proximity matrix for this example dataset is shown here: 

 
Figure B-5. A Random Forests proximity matrix is the mean across proximity matrices generated by many decision 
trees, which differ from one another due to random factors introduced into the analysis. The result for this example 
is shown here. Shading indicating same (green) or different (light grey) leaf node classification is retained from the 
single tree’s proximity matrix shown in Fig. 4b. In most cases, the Random Forests outcome agrees with the 
individual tree, as indicated by the former showing a high value for sample pairs that were in the same leaf node in 
the example tree, and vice versa. Some samples that were classified together in the single tree, however, have 
relatively low (<0.5) proximity according to the Random Forests output (yellow circles). In general, the latter is 
more reliable because it is based on many trees, and thus avoids overfitting that may be associated with any one of 
them. 

 

                                                

9 As described in Appendix A, each tree in the forest has randomness added to it in several ways. This prevents the 
trees from being identical, and in general leads to better predictive power for a Random Forests analysis than for any 
one decision tree alone. Incidentally, it is also the origin of the name Random Forest.  
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Final BSLs Report – Appendix B 

22 January 2016 B-7 

This matrix is shaded to match the proximity scores from the single decision tree shown above. 
Thus it can be seen that most of the samples that were classified together in the example tree 
have high proximity overall in the RF results, and vice versa. There are exceptions however 
(circled in yellow), reflecting that a single tree may have a tendency to conform too closely to the 
particular dataset at hand (i.e., to be “overfit”). In general, where the RF differs from the single 
tree, the former can be expected to yield more robust information about the dataset. For example, 
the individual tree classified Sample 10 together with Samples 1 and 7, whereas the RF indicates 
that Sample 10 is only weakly related to these samples. Visual inspection of Fig. 4a would seem 
to support the RF interpretation—Samples 1 and 7 are not much closer to Sample 10 than they 
are to the cluster in the upper right quadrant of the plot.  

The final step in RF clustering is to use the proximity matrix as input to the Partitioning Around 
Medoids (PAM) algorithm. PAM searches among a set of samples with known proximity to one 
another, to identify the samples that are most representative of natural groupings in the data. In 
this example, for instance, PAM was run to identify two clusters, which might be conceptualized 
to represent impacted and unimpacted samples (the rationale used in this study). The algorithm 
considered different pairs of samples to serve as the central points or medoids of these clusters, 
and for each possible pair calculated an overall score representing how similar all the other 
samples are to their nearest medoid.  

 
Figure B-6.  In the final step of the clustering analysis, the Random Forests proximity matrix (Figure B-5) is used as 
input to a Partitioning Around Medoids (PAM) algorithm. PAM divides a dataset into a specified number of clusters 
(two, in this example) by identifying samples to serve as the center points (“medoids”) of each cluster. Once 
medoids are chosen, samples are assigned to the cluster whose medoid they are nearest to, according to the 
proximity matrix. The algorithm searches for the optimal medoids around which to cluster (open circles), defined as 
those that maximize the total proximity between each sample and its assigned medoid. In this example, PAM 
identifies the same two clusters (red and blue dots) that were actually imposed in this artificial dataset (Figure B-1). 
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As shown in Figure B-6, for this example Samples 2 and 6 were identified as the best medoids to 
represent a two-cluster partitioning of the data. Assigning the remaining samples to their nearest 
medoid results in a visually intuitive clustering that in fact corresponds to the known model used 
to generate the data for this example (Figure B-1). Thus, the completed RF clustering algorithm 
was able to obtain an accurate clustering pattern for the data in this test case where the true 
clusters were known. While it is impossible to be sure of clustering outcomes in the real analysis, 
where true impacted versus unimpacted status is unknown, reliable performance in test cases 
such as the one illustrated here builds confidence that the approach is robust. 

Finally, it is worth acknowledging that the example shown here is intentionally contrived to 
illustrate the RF clustering method. In this simple case, the clusters identified by the algorithm 
are quite distinct, and could easily have been obtained by various other, less complicated 
techniques. However, in a real dataset, with perhaps thousands of samples measured on dozens 
of variables, results will not be so obvious. Careful analysis has shown RF clustering to have 
distinct advantages over alternative methods in these cases, but demonstrating those advantages 
is beyond the scope of this simple example.  

 



 

Appendix C Boxplots for Initial Stratigraphic Layers 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


